Expressões Numéricas

Operações com grupos de números

As expressões numéricas são conjuntos de números e operações matemáticas (radiciação, potenciação, multiplicação, divisão, etc.) que precisam ser calculadas de acordo com uma sequência.

Essas expressões são organizadas por sinais gráficos – símbolos que indicam a ordem em que as operações devem ser resolvidas. Os principais são parênteses (), chaves { } e colchetes [ ].

Regras das expressões numéricas
As expressões numéricas obedecem prioridades em seus cálculos. (Foto: Pixabay)

Ordem dos sinais gráficos

Normalmente, as expressões numéricas são escritas dentro de parênteses, chaves ou colchetes. Por isso, é fundamental saber quais símbolos determinam o início e o fim dos cálculos.

Vejamos a seguir a ordem de prioridades:

  • 1° passo: resolver todas as operações dentro dos parênteses.
  • 2° passo: resolver todas as operações dentro dos colchetes.
  • 3° passo: resolver todas as operações dentro das chaves.

Agora que sabemos a sequência correta, vamos calcular um exemplo com adição e subtração:

36 + 2.{25 + [ 18 – (5 – 2).3]} =

36 + 2.{ 25 + [18 – 3.3]} =

36 + 2.{25 + [18 – 9]} =

36 + 2.{25 + 9} =

36 + 2.34 =

36 + 68 = 104

Vale lembrar que na falta de um símbolo, a operação começa pelos que estão presentes, ou seja, quando não apresenta parênteses, por exemplo, deve-se solucionar as questões dentro dos colchetes, e assim sucessivamente. O importante é seguir a ordem de prioridades.  

Além disso, caso sobre um único número dentro dos parênteses, chaves ou colchetes durante os cálculos, estes podem ser retirados.

Fique atento!

  • Se o sinal de soma anteceder os parênteses, colchetes ou chaves, deve-se acompanhar a sequência de prioridades e reescrever os números com os mesmos sinais (+ ou -).
  • Se o sinal de subtração anteceder os parênteses, colchetes ou chaves, deve-se acompanhar a sequência de prioridades e reescrever os números com os sinais trocados.

Ordem das operações

Assim como nos sinais, existem ordens na resolução de expressões numéricas que precisam ser obedecidas. Por isso, as operações com soma, subtração, divisão, multiplicação, potenciação e radiciação são resolvidas da seguinte maneira:

1° Potenciação ou radiciação

Em expressões numéricas, a prioridade são as potências e raízes, ou seja, devem ser resolvidas logo de início. A exceção é para os valores que estão em parênteses, colchetes ou chaves. Neste caso, vale a regra dos sinais gráficos.

3². 2/ 2 = 9.2/ 2 = 18/2 = 9  ou  3². 2/ 2 = 3². 1 = 9.1 = 9

Entre a potenciação e radiciação não há preferências. Por causa disso, ambas podem ser efetuadas ao mesmo tempo.

2° Multiplicação e divisão

Caso não ocorra a presença de raízes ou potências, a orientação é calcular as multiplicações e divisões. Como também não existe prioridade, resolva a que aparecer primeiro na expressão. Isso facilitará as outras operações.

2.15 / 2 = 30/2 = 15  ou  2.15/2 = 2. 7,5 = 15

3° Adição e subtração

Por último, mas não menos importante, desenvolva as somas e subtrações. Assim como os outros procedimentos, não há prioridade na resolução. Execute- as na sequência que aparecer.  

20 – 5 + 10 = 15 + 10 = 25  ou  20 – 5 + 10 = 20 + 5 = 25

Como resolver as expressões numéricas?

Agora que sabemos as regras, vamos encontrar os resultados de algumas expressões numéricas:

3 . {4² – [ 5 . 2³ + 7. (9² – 80)]} = ?

Resolve-se, primeiramente, as potências e depois as outras operações com parênteses, colchetes e chaves:

3 . { 16 – [ 5 . 8 + 7 . (81 – 80)]} =

Elimina-se os parênteses e mantém-se o sinal do valor encontrado, pois é a multiplicação que antecede o símbolo gráfico:

3 . { 16 – [ 5 . 8 + 7 . 1 ]} =

Realiza-se as operações dentro dos colchetes:  

3 . { 16 – [ 40 + 7]} =

Repete-se as operações dentro do colchetes:

3 . { 16 – [ 47 ]} =

Como sobrou um único número dentro dos colchetes, este pode ser eliminado:

3  { 16 – 47 } = 

Resolve-se a subtração dentro das chaves:

3 . {–31} =

Logo, o resultado final é – 93.

Dado a expressão (¼)² . 4/5+ 2/5 ÷ (2/3)³ = ?  

Primeiro resolve-se as potências:

1/16 . 4/5 + 2/5 ÷ 8/27 =

Efetua-se a multiplicação, uma vez que aparece de início (lembre-se que na multiplicação de frações mantém-se a primeira e multiplica-se pela inversa da segunda):

4/80 + 2/5. 27/8 =

Resolve-se a multiplicação:

4/80 + 54/40 =

Simplifica-se e soma-se as frações:

1/20 + 27/ 20 = 28/20 = 7/5

Resumo sobre expressões numéricas

Expressões numéricas são conjuntos de números e operações matemáticas, como radiciação, potenciação, multiplicação, divisão, entre outros, que precisam ser calculadas conforme com uma sequência.

Elas são organizadas organizadas por sinais gráficos. Os principais são parênteses (), chaves { } e colchetes [ ]. Sendo assim, é importante saber quais símbolos determinam o início e o fim dos cálculos.

O primeiro passo é resolver todas as operações dentro dos parênteses, depois resolver todas as operações dentro dos colchetes e, por fim, resolver todas as operações dentro das chaves.

Faça a referência deste conteúdo seguindo as normas da ABNT:

SANTOS, Thamires. Expressões Numéricas; Guia Estudo. Disponível em

< https://www.guiaestudo.com.br/expressoes-numericas >. Acesso em 30 de janeiro de 2020 às 02:32.

Copiar referência

Outros Artigos de Matemática

O sistema da Blockchain possibilita o uso de Bitcoins no mundo todo.

Bitcoin

Bitcoin é uma criptomoeda utilizada em transações financeiras virtuais sem […]

Engenho de açúcar

Sistema Plantation

Sistema plantation é um sistema descendente do período colonial europeu […]

Colheita de plantação

Sistemas agrícolas

Os sistemas agrícolas formam o conjunto de atividades técnicas, econômicas […]

Setores da economia

Os setores da economia existem para medir o desenvolvimento econômico […]